加密貨幣交易所 加密貨幣交易所
Ctrl+D 加密貨幣交易所
ads
首頁 > 波場 > Info

a16z:生成式AI在游戲領域的機會_人工智能:人工智能幣種有哪些

Author:

Time:1900/1/1 0:00:00

原文標題:《The Generative AI Revolution in Games》

原文作者:James Gwertzman、Jack Soslow

原文編譯:阿法兔研究筆記

A16Z 最近寫了一篇很有意思的文章,談到他們認為的生成式 AI 和游戲結合在一起的機會在哪,筆者翻譯后對部分內容進行了注解。文章主要兩部分:第一部分,包括 A16Z 對游戲領域生成式 AI 的觀察和預測;第二部分,包括 A16Z 對游戲 + 生成式 AI 領域的市場生態的判斷(第二部分將會在下一篇文章發出來,包括筆者對各個公司的解析)。

游戲設計領域存在不可能三角:成本、質量或速度這三項中通常只能取兩項,而現在,設計師可以通過這些 AIGC 工具,不再需要花費很多人工的制作時間,只要幾個小時就能創造出高質量的圖像,而這其中,真正具有變革意義的是,任何人只要學會幾個簡單的工具,就可以獲得這種具備創造性的能力。

這些工具,能夠以快速迭代的方式創造出無窮無盡的變化,并且一旦經過培訓,整個過程是實時的,也就是說,結果幾乎是即時可用的。

自 Real-time 3 D 技術出現以來,還沒有能夠對游戲產生如此大潛在改變的技術(有了實時 3 D 的軟件,整個虛擬世界可以眼以更快的速度進行數字渲染,為用戶提供了更具吸引力和身臨其境的體驗)。

那么,生成式 AI 的發展方向是什么?又將如何改變游戲?首先,我們回顧一下生成式 AI 的概念。

生成式 AI 是機器學習的一個類別,計算機可以根據用戶的輸入 / 提示,生成原創的新內容。目前這項技術最成熟的應用主要在文本和圖像領域,不過幾乎所有的創意領域都有類似的進步(生成式 AI 的技術應用),覆蓋動畫、聲音效果、音樂,甚至是對具備完整個性的虛擬人物進行原創。

當然,人工智能在游戲中并不新鮮。即使是早期的游戲,如雅達利的《Pong》早就有計算機控制的對手和玩家進行對戰。(筆者注:游戲開發商雅達利,創辦時期在微處理器誕生后不久,在 1972 年推出首款街機 Pong,奠定街機鼻祖地位。 1974 年,蘋果的喬布斯加入雅達利,負責開發電子游戲)

派盾:0x7a16開頭地址從Aave中取出1500萬枚CRV:金色財經報道,PeckShield在推特上表示,0x7a16開頭巨鯨地址從Aave V2中取出1500萬枚CRV,價值約1000萬美元。[2022/11/25 20:45:27]

然而這些計算機中的虛擬對手和我們今天講的生成式人工智能并不一樣,這些計算機對手只是游戲設計師精心設計的腳本程序,它們確實模擬了一個人工智能的對手,但它們不能學習和迭代,水平和編寫它們的工程師一樣。

那么,生成式 AI 和游戲的結合,技術底層有哪些變化?微處理器的速度更快,云計算和各種計算能力更強,具備建立大型的神經網絡的潛力,可以在識別高度復雜領域的模式和表征。(Thanks to faster microprocessors and the cloud. With this power, it’s possible to build large neural networks that can identify patterns and representations in highly complex domains. 筆者注:這里的意思是越來越快的微處理器單體能力乘上云計算的規模化系數,使建立能夠支持復雜的模式識別,啥是模式識別?模式識別是指對表征事物或現象的各種形式的 ( 數值的、文字的和邏輯關系的 ) 信息進行處理和分析,以對事物或現象進行描述、辨認、分類和解釋的過程, 是信息科學和人工智能的重要組成部分)

本篇文章主要兩部分:

第一部分,包括 A16Z 對游戲領域生成式 AI 的觀察和預測;

第二部分,包括 A16Z 是我們對游戲 + 生成式 AI 領域的市場生態:Market Map ,這部分概述了各個細分市場,指出了每個細分市場的主要公司。

一些假設:

首先探討一下文章余下部分所依據一些假設:

 1. 通用式人工智能的研究(成功)數量將繼續增長,出現更多更有效的技術。

體育元宇宙初創公司Gym Class完成800萬美元種子輪融資,a16z領投:金色財經報道,體育元宇宙初創公司Gym Class宣布完成800萬美元種子輪融資,由 Andreessen Horowitz(a16z) 領投,Y Combinator 參投。Gym Class允許使用虛擬頭顯與來自世界各地的玩家一起打籃球(8人),玩家通過自己的身體動作控制全身化身,并手持 Quest 控制器在用戶可以自行設計的可定制數字球場上進行投籃、傳球、運球和扣籃。據悉,目前這款應用在 Meta Quest App Lab 的下載量已經接近一百萬,并計劃于今年秋季在 Meta Quest Store 上推出。(sporttechie)[2022/8/3 2:55:04]

上圖是每月 arXiv 中發表的關于機器學習或人工智能的學術論文數量。正如圖中所示,論文的數量正在呈指數級增長,且沒有放緩的跡象,而這部分數據僅僅包括已經發表的論文,還有許多研究并沒有公開發表,而是直接應用于開源模型或產品研發,這些開源模型和產品,帶來了爆炸式的創新。

 2. 在所有娛樂類目中,游戲將成為收到生成式人工智能最大影響的領域。

就目前所涉及的資產類型( 2 D 藝術、 3 D 藝術、聲音效果、音樂等)而言,游戲是娛樂類目中最復雜的一種,同時,游戲也是互動性最強的,它非常強調實時體驗。這就為新的游戲開發者創造了一個非常高的進入門檻,也為制作一個真正的 3 A 大作游戲創造了高昂的成本,這些存在的門檻和成本問題,為生成式人工智能在游戲領域的破壞性創新,創造了巨大的機會(如下圖):

舉個例子,像《荒野大鏢客:救贖 2 (Red Dead Redemption 2 )》這樣的游戲是有史以來制作成本最昂貴的游戲之一,它的制作成本近 5 億美元。而荒野大鏢客是也是市場上巨具備最棒的視覺效果之一的游戲,花了近 8 年的時間來制作,有 1000 多個游戲角色(并且每個角色都有自己的個性、和專屬配音演員),一個近 30 平方英里大小的游戲世界, 6 個章節的 100 多個任務,以及由 100 多個音樂家創作的近 60 小時的音樂,這個游戲的所有內容涉及的制作都非常龐大。

a16z:已經在2021年籌集總共90億美元基金:1月8日消息,a16z發文宣布已經于2021年籌集總共90億美元基金,包括15億美元Bio基金,50億美元增長基金,25億美元風投基金,22億美元加密基金,4億美元種子基金,并表示將繼續投資全階段(公司),(為這些公司)提供2.5萬到數億美元投資。[2022/1/8 8:34:11]

那么,如果我們將《荒野大鏢客:救贖 2 》與《微軟模擬飛行》相比,《微軟模擬飛行》這個游戲更為巨大...因為微軟飛行模擬器的玩家能夠在游戲中圍繞整個地球飛行,所有 1.97 億平方英里的地方。那么,微軟是如何打造這樣一個大型游戲的呢?主要是通過人工智能來完成,微軟公司與 blackshark.ai 合作,對人工智能進行訓練,從二維衛星圖像生成無限逼真的三維世界。

blackshark.ai 是個啥公司?

blackshark.ai 是通過機器學習技術,提取全球范圍內的地球基礎設施的公司,從全球的衛星和航空圖像中提取數據,用人工智能基于目前地理數據的數字孿生場景,這些結果可用于可視化、模擬、繪圖、混合現實環境和其他企業解決方案,而技術本身具備的云計算更新能力,能夠實時更新這些數據。

這僅僅是一個例子,如果不使用人工智能技術,《微軟模擬飛行》這款游戲實際上是不可能制作完成的。除此之外,游戲的成功還要歸功于這些模型可以隨著時間的推移不斷改進,例如,可以加強「highway cloverleaf overpass」模型,通過人工智能運行整個建造過程,游戲中的整個地球上的所有的高速公路立交橋都可以立馬得到改進。

 3. 游戲制作中涉及的每一個資產都會有一個生成的 AI 模型

a16z合伙人:NFT用戶群即將爆發:11月15日消息,a16z合伙人Katie Haun接受TechCrunch采訪時表示,NFT目前較為集中的用戶群即將迎來爆發,這將極大地改變消費者和內容創作者的互聯網商業模式。NFT能讓消費者擺脫對平臺的依賴,即便平臺(比如游戲)關閉,用戶仍能將相關益處轉移至其他平臺。內容創作者可對數字商品進行編程,以便在未來的交易中持續獲得財務收益,同時消除中間商抽成。目前該技術還處于早期階段,有很多NFT被用于炫富目的,她認為未來會有更多現實世界中的基本商品以數字方式開發。(TechCrunch)[2021/11/15 6:52:09]

到目前為止,像 Stable Diffusion 或 MidJourney 這樣的 2 D 圖像生成器,由于其能夠生成的圖像十分搶眼,占據了目前生成式人工智能的大部分流行的興奮點。而現在已經出現了用于游戲中幾乎所有資產的生成式人工智能模型,從 3 D 模型到角色動畫,再到對話和音樂。(下一篇文章會講一下具體公司的市場生態 Market Map)

 4. 內容成本將持續下降,某些情況下的內容的成本會降為零

當我們和嘗試將生成式 AI 人工智能整合到制作場景的游戲開發者交談時,最大的興奮點在于,制作游戲的時間和成本都會大幅降低。一位開發者告訴我們,為一張圖片生成概念圖的時間從 3 周下降到 1 小時。我們相信,在整個游戲流程的制作過程中也可以實現類似的「降本增效」。

值得注意的是,藝術家并沒有被取代的危險,這意味著藝術家不再需要自己親自上手去完成所有的工作:藝術家和設計師們可以設定初始的創意方向,然后將大部分耗時和技術執行工作交給人工智能。在這一點上,就像早期手繪動畫的畫師一樣,高度熟練的「繪畫專家」描繪出動畫的輪廓,然后由成本相對較低的畫手們完成耗時的工作,為動畫膠片上色,填充線條,只是我們談到的是游戲創作領域的應用。

 5. 我們仍然處于這場行業變革領域的初期,尚且有很多部分需要完善

Web3及加密通信協議XMTP完成2000萬美元A輪融資,a16z領投,Coinbase Ventures等參投:9月1日,Web3及加密通信協議XMTP宣布完成2000萬美元A輪融資,a16z領投,Coinbase Ventures、Not Boring Capial、SK Ventures、Offline Ventures、StarkWare、Anthony Pompliano、Anthony Sassano (The Daily Gwei)、Kain Warwick (Synthetix)、Kayvon Beykpour (Twitter)、Stani Kulechov (Aave)、Robert Leshner (Compound Labs)、Roham Gharegozlou (Dapper Labs)、Ryan Sean Adams (Bankless)、Ryan Selkis (Messari) 等基金與天使投資人參投。

據悉,這筆資金將用于擴充 XMTP 團隊規模,并將幫助 XMTP 通過其獨立協議和去中心化網絡實現加密錢包間的通信。[2021/9/1 22:51:44]

盡管最近很多人都很激動,但我們仍然剛剛處于起跑線。在大家清如何真正應用這種新技術與游戲領域的結合時,還有大量的工作要做,而對那些之前、以及迅速進入這個新領域的公司來說,將會存在巨大的機會。

鑒于以上的假設,本文對于游戲行業如何被改造這塊,進行了預測和推演。

 1. 學習如何有效地應用生成式人工智能,能將成為一種市場技能。

已經有先驅分子能比其他人更有效地應用生成式人工智能。為了最好的用好這項新技術,還需要了解各種工具和技術,并知道如何對它們進行組合應用。我們預測有效地應用生成式人工智能,本身就會成為非常有潛力的技能,因為它可以將藝術家的創造性視野與程序員的技術能力結合起來。

Chris Anderson 有句名言:「Every abundance creates a new scarcity 豐富將會造就新的稀缺。」隨著內容逐漸變得更為豐富,那些了解如何與人工智能工具進行最為高效的合作的藝術家將是最緊缺的。

舉例:將生成式人工智能用于藝術品的生成,也會帶來一些挑戰,包括:

保持連貫性:需要能夠對游戲中的各類資產進行修改或編輯,對于人工智能工具,這意味著需要能夠以相同的信號來復制(數字)資產,這樣我們才可以對它進行修改和挑戰。這可能很會棘手,因為同樣的提示,可能會產生截然不同的結果。

保持風格的一致性:單個游戲中的所有藝術作品都要保持一致的風格,這就意味著,人工智能的工具需要經過訓練或與藝術家 / 設計師的既定風格相聯系。

 2. 游戲開發門檻的降低,將會導致更多的冒險和創造性探索

我們可能很快就會進入一個新的游戲開發「黃金時代」,較低的準入門檻會導致出現更多創新和創造性游戲,而這不僅僅是因為較低的制作成本導致了游戲制作商需要擔的風險較低,還因為這些工具代表了為更多受眾創造高質量內容的能力。

 3. 由人工智能輔助的的「微型游戲工作室」逐步崛起

有了生成式人工智能的工具和服務,也許更多可行的商業游戲,會由只有 1 或 2 名員工的小型「微型工作室」制作。當然,小型獨立游戲工作室已經很常見,熱門游戲《Among Us》(筆者注:Among Us 是一款由 Innersloth 制作發行的策略休閑游戲,可以進行 4-10 人聯機游玩,于 2018 年 11 月 17 日發售)是由只有 5 名員工的工作室 Innersloth 制作的,而這些小型工作室能夠創造的游戲的規模將增長。

 4. 每年發布的游戲數量會增加

Unity 和 Roblox 的成功表明,提供強大的創意工具會導致更多的游戲被建造。生成性人工智能將進一步降低門檻,創造更多的游戲。這個行業已經遭受了發現挑戰 -- 僅去年就有超過 1 萬個游戲被添加到 Steam 上 -- 這將給發現帶來更大的壓力。然而,我們也將看到...

 5. 新的游戲類型將會被創造出來

將會有新的游戲類型被發明出來,像前文提到的《微軟模擬飛行》,但全新的游戲類型發明出來,這種游戲會和新內容的實時生成結合起來。

例如 Spellbrush 的 RPG 游戲 Arrowmancer,以人工智能創造的角色為特色,幾乎沒有限制的新玩法。還有的游戲開發商,正在使用人工智能讓玩家在游戲中創建自己的頭像:根據玩家的描述來自動生成頭像圖片。注意,從用戶端的體驗來看,讓玩家通過人工智能生成內容,能讓玩家感知到更大的所有權。

 6. 價值將歸于特定行業的 AI 工具,而不僅僅是基礎模型

圍繞Stable Diffusion和 Midjourney 等基礎模型的熱度,正在產生極其夸張的估值,但隨著新研究的持續涌現,新模型將隨著新技術的完善而出現和不斷迭代。從目前 3 個流行的生成性人工智能模型(Dall-E、Midjourney 和 Stable Diffusion)的網站搜索流量來看,每個新模型都有圍繞它的特定關注點。

另一種途徑是構建符合行業需求(垂直行業)工具套件,這些工具會專注于特定行業的生成式人工智能需求,深入了解特定的受眾,并與現有的生產場景(Unity 或 Unreal)進行整合。(筆者注:上篇翻譯的 Coatue 白皮書 AIGC 的機會到底在何處?其中提到了 Adobe 和 Office 套件與 AI 的結合,類似的需求也存在游戲領域,值得關注)

一個典型的例子是 Runway,Runway 針對視頻創作者的需求,提供人工智能輔助工具,如視頻編輯、綠屏移除、內畫和運動跟蹤,這樣的工具可以隨著時間的推移增加新的應用場景。目前還沒有看到像 Runway 這樣的游戲工具出現,但這是一個有潛力的領域。

 7. 即將面臨的法律挑戰

所有這些生成式人工智能模型的共同點是,這些 AI 模型都是使用大量的內容數據集進行訓練的,通常是通過互聯網的數據集來創建。例如,「Stable Diffusion」是在超過 50 億張圖片 / 標題的基礎上進行訓練的,這些圖片 / 標題都是從網絡上采集而來的。目前,這些模型聲稱在「合理使用」的版權原則下運作,但這一論點還沒有在法律得到明確的檢驗。顯然即將到來的法律挑戰可能會改變生成式人工智能的格局。

大型電影公司有可能通過自己版權的優勢建立專有模型,尋求競爭優勢。例如,微軟有很多旗下的工作室,特別是還收購了動視暴雪。

 8. 至少在目前,不同于藝術領域,生成式 AI 會不會在編程領域帶來巨大的變革。

軟件工程是游戲開發的另一個主要成本來源,但用人工智能模型生成代碼需要更多的測試和驗證,因此,代碼生成比生成創意資產的生產力提升程度要低。我們認為,像 Copilot 這樣的編碼工具可能為工程師提供適度的性能改進,但在短期內不會和內容領域變化這么大。

 1. 開始探索生成性人工智能:想要弄清楚如何充分利用這場即將到來的生成式人工智能革命的力量,還需要一段時間。早開始發展業務的公司未來會具備優勢,有幾個工作室正在進行內部實驗項目,探索這些技術如何影響游戲制作。

 2.尋找市場空白之處的機會

目前整個賽道的很多部分已經非常擁擠,如動畫、語音、對話,但還有很多領域是廣泛開放的。我們鼓勵對這一領域感興趣的創業者將目光集中在仍未開發的領域,如「游戲 + 生成式 AI 賽道」。

阿法兔

個人專欄

閱讀更多

金色早8點

金色財經

去中心化金融社區

CertiK中文社區

虎嗅科技

區塊律動BlockBeats

念青

深潮TechFlow

Odaily星球日報

騰訊研究院

Tags:人工智能NBSBSPION人工智能幣種有哪些nbs幣未來價格BSPNetworkAxion

波場
彭博2023加密展望:比特幣已做好反彈準備_比特幣:NBS

本文來自 Bloomberg Intelligence,原文作者:Mike McGlone、Jamie Douglas、Eric Balchunas 和 James SeyffartO.

1900/1/1 0:00:00
美林時鐘模型研究:加密貨幣當前現狀_CPI:加密貨幣

原文標題:《美林時鐘模型研究》原文作者:Huobi Research當前加密貨幣領域生態越來越豐富、參與者越來越多樣化且沉淀資金越來越多.

1900/1/1 0:00:00
FTX崩潰后 參議院委員會推動CFTC對Crypto的監管_FTX:CFT

在2022年12月1日參議院農業委員會的一次聽證會上,呼吁國會迅速行動,通過CFTC的法律,以防止FTX崩潰后資金的進一步損失.

1900/1/1 0:00:00
受美制裁的央行可能已經持有比特幣?哈佛大學最新論文解析_比特幣:MAT

注:原文作者為 Danilo Lantas,白澤研究院翻譯編輯,略有刪改。上個月,哈佛大學發表了一篇研究論文,認為中央銀行應該開始購買比特幣以保護自己免受制裁.

1900/1/1 0:00:00
Web3冷啟動:如何讓項目被更多人知道 走向市場?_WEB:ALX

原文標題:《13 個 Web3 增長平臺實測之如何 0 成本冷啟動項目至 10k 用戶》原文作者: @SunnyZ_Crypto 作為 Web3 項目負責增長的人.

1900/1/1 0:00:00
事關以太坊后10年 最新路線圖白話解讀版來了_QUO:GameVerse

作者:五火球教主 ETH轉POS Merge那會,路線圖已經發布過一次,相信一直關注的老鐵肯定不陌生.

1900/1/1 0:00:00
ads